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”Today’s Important Applications are not Programs”

• Dynamic Processes:

• Process runs forever (or for very long time).
• Input is continuously injected to the system.
• Irrevocable decisions made online based on current input,

before observing future input items.

• Static (batch) processes:

• Process terminates with an output.
• All data is available at the beginning of the computation.
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Examples of Dynamic Processes

• Contention-resolution protocols - Ethernet, Aloha protocol.

• Routing protocols - Internet, parallel computation.

• Virtual-memory management - Paging, Prefetching.

• Load balancing protocols - time sharing, distributed
scheduling.

• Markovian Decision Processes - Computational finance (equity
and commodity trading), stochastic planning, etc.
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Contention Resolution Protocols

Ethernet Channel:

• One request can be satisfied at a given time.

• If more than one request is submitted, no request is satisfied.

• A sender can detect if its request is satisfied.

• A satisfied request occupies the resource for one step.

• No other communication/coordination between the senders.

Protocol: based on history of success/failure decide when to try to
submit next.



Analysis of Dynamic Processes

• Performance measures: Instead of the run-time we are
interested in the long term (steady state) performance of the
process:

• Stability: The (expected) number of requests/jobs in the
systems is bounded;

• Utility; What fraction of requests is actually executed (on
average)?

• Efficiency: How long does it take (on average) to process a
request?



Input Model

Performance depends on the timing of input arrival:

• Standard worst-case analysis - meaningless in most cases

• Competitive (online) analysis

• Restricted input:
• Deterministic bounds on input stream - Adversarial Queuing

Theory
• Stochastic input: Assuming some probability distribution or

statistical properties on input distribution



Stochastic Analysis

• Assume some underlying distribution on possible input
sequences.

• Input distribution can vary in time.

• Known or unknown input distribution.

• Input distribution is characterized by some statistical
properties (bounds on moments - stochastic adversarial
analysis)

• Study:

• Stability: The (expected) number of requests/jobs in the
systems is bounded;

• Loss rate: Expected fraction of requests that are actually
executed?

• Recover-time: Expected time to recover from a bad state.
• Efficiency: Expected cost/time to process a request?
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Related Questions Are Studied in ...

• Queuing theory;

• Markovian decision process.

• Theory of infinite stochastic processes;

• Dynamic systems.

• Control theory.



Stochastioc Analysis

Tools: modeling temporal relations between random variables.



Course Outline

• Martingales

• Application: sampling web search results

• Drift criteria

• Application: load balancing protocol

• Poisson process

• Equilibrium through differential equations

• Application: the supermarket model (dynamic balanced
allocation)

• Application: analyzing P2P network protocol

• Dynamic analysis through pure combinatorial arguments
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Stochastic Performance Measures

λ : Arrival rate - expected number of new requests in a unit time
interval.
N(t): Number of requests in the system at time t.
W (t): The waiting + execution time of a request that entered the
system at time t.
Stability: We say that the system is stable if the expected number
of requests in the system is bounded with respect to time,

lim
t→∞

E [N(t)] < ∞.



Little’s Formula

N = lim
t→∞

1

t

t∑
i=1

N(i)

Assume α(t) arrivals during [0, t] , in times τ1, . . . , τα(t). Then

W = lim
t→∞

∑α(t)
i=1 W (τi )

α(t)
.

Little’s Equation: If N is bounded then the system is stable and

N = λW .



“Proof”

The expected number of new arrivals the interval [0, t] is λt .
The expected number of departures is N

W t.
In the limit

λt =
N

W
t

or

λW = N.

[non-lattice, with probability 1]



Martingales

A simple but powerful technique for modeling stationary stochastic
processes.



gambler’s ruin

Consider a sequence of independent, fair gambling games:

• In each round, a player wins a dollar with probability 1/2 or
loses a dollar with probability 1/2.

• The player quits the game when she either loses `1 or wins `2

dollars.

• What is the probability that the player wins `2 dollars before
losing `1 dollars?

• The expected change in the “fortune” of the player is always 0



Martingales

Definition

A sequence of random variables Z0,Z1, . . . is a martingale with
respect to the sequence X0,X1, . . . if for all n ≥ 0 the following
conditions hold:

• Zn is a function of X0,X1, . . . Xn;

• E[|Zn|] < ∞;

• E[Zn+1 | X0, . . . ,Xn] = Zn.

A sequence of random variables Z0,Z1, . . . is called martingale
when it is a martingale with respect to itself. That is,
E[|Zn|] < ∞, and E[Zn+1 | Z0, . . . ,Zn] = Zn.



Example - Gambling

Consider a sequence of fair games.
Xi = be the amount the gambler wins on the i-th game (Xi

negative if the gambler loses).
Zi = be the gambler’s total winnings at the end of the i-th game.
E[Xi ] = 0, and

E[Zi+1 | X1,X2, . . . ,Xi ] = Zi + E[Xi+1] = Zi .

Thus, Z1,Z2, . . . ,Zn is a martingale with respect to the sequence
X1,X2, . . . ,Xn.
The sequence is a martingale even if the ammount bet at each
game is different and dependends upon previous results.



Doob martingale

Let X0,X1, . . . ,Xn be a sequence of random variables, and let Y
be a random variable with E[|Y |] < ∞. Then

Zi = E[Y | X0, . . . ,Xi ], i = 0, 1, . . . , n,

gives a martingale with respect to X0,X1, . . . ,Xn, since

E[Zi+1 | X0, . . . ,Xi ] = E[E[Y | X0, . . . ,Xi+1] | X0, . . . ,Xi ]

= E[Y | X0, . . . Xi ]

= Zi .

If Y is fully determined by X1, . . . ,Xn, then

E[Y ] = Z0,Z1,Z2, . . . ,Zi = E[Y | X0, . . . ,Xi ], . . . ,Zn = Y .



Balls and Bins

We throw m balls independently and uniformly at random into n
bins.
Xi = the random variable representing the bin that the ith ball
falls into.
F = the number of empty bins after the m balls are thrown.
The sequence

Zi = E[F | X1, . . . ,Xi ]

is a Doob martingale.



Example: Edge Exposure Martingale

Let G be a random graph from Gn,p. (n vertices, each possible
edge exists with probability p independent of other possible edges.)
Label the m =

(n
2

)
possible edge slots in some arbitrary order.

Xj =

{
1 if there is an edge in the j-th edge slot,
0 otherwise.

Consider any finite-valued function F defined over graphs; for
example, let F (G ) be the size of the largest independent set in G .
Let Z0 = E[F (G )], and

Zi = E[F (G ) | X1, . . . ,Xi ], i = 1, . . . ,m.

The sequence Z0,Z1, . . . ,Zm is a Doob martingale that represents
the conditional expectations of F (G ) as we reveal whether each
edge is in the graph, one edge at a time.



Lemma

If the sequence Z0,Z1, . . . ,Zn is a martingale with respect to
X0,X1, . . . ,Xn, then for all 0 ≤ i ≤ n,

E[Zn] = E[Z0].

Proof.

Since Z0,Z1, . . . is a martingale with respect to X0,X1, . . . ,Xn,

Zi = E[Zi+1 | X0, . . . ,Xi ].

Taking the expectation of both sides and using the definition of
conditional expectation, we have

E[Zi ] = E[E[Zi+1 | X0, . . . ,Xi ]] = E[Zi+1].

Repeating this argument, we have E[Zn] = E[Z0].



Tail Inequalities for Martingales

Theorem

Azuma-Hoeffding inequality Let X0, . . . ,Xn be a martingale
such that

|Xk − Xk−1| ≤ ck .

Then for all t ≥ 0 and any λ > 0,

Pr(|Xt − X0| ≥ λ) ≤ 2e−λ2/(2
Pt

k=1 c2
k ).



Corollary

Let X0,X1, . . . be a martingale such that for all k ≥ 1,

|Xk − Xk−1| ≤ c .

Then for all t ≥ 1 and λ > 0,

Pr(|Xt − X0| ≥ λc
√

t) ≤ 2e−λ2/2.



proof

We use Markov Inequality (Chernoff’s style)

Pr(|Xt − X0| ≥ λ) ≤ E[eα(Xt−X0)]

eλ
.

To bound for E[eα(Xt−X0)] we define

Yi = Xi − Xi−1, i = 1, . . . , t.

Note that |Yi | ≤ ci , and since X0,X1, . . . is a martingale,

E[Yi | X0,X1, . . . ,Xi−1] = E[Xi − Xi−1 | X0,X1, . . . ,Xi−1]

= E[Xi | X0,X1, . . . ,Xi−1]− Xi−1 = 0.



Consider
E[eαYi |X0,X1, . . . ,Xi−1].

Writing

Yi = −ci
1− Yi/ci

2
+ ci

1 + Yi/ci

2
,

and using the convexity of eαYi we have that

eαYi ≤ 1− Yi/ci

2
e−αci +

1 + Yi/ci

2
eαci

=
eαci + e−αci

2
+

Yi

2ci

(
eαci − e−αci

)
.



Since E[Yi | X0,X1, . . . ,Xi−1] = 0, we have

E[eαYi |X0,X1, . . . ,Xi−1]

≤ E
[

eαci +e−αci

2 + Yi
2ci

(eαci − e−αci ) |X0,X1, . . . ,Xi−1

]
= eαci +e−αci

2 ≤ e(αci )
2/2.

Using the Taylor series expansion of ex to find

eαci + e−αci

2
≤ e(αci )

2/2,



Since Yi = Xi − Xi−1,

E
[
eα(Xt−X0)

]
= E

[
t−1∏
i=1

eαYi

]

= E

[
t−2∏
i=1

eαYi

]
E[eαYt−1 |X0,X1, . . . ,Xt−2]

≤ E

[
t−2∏
i=1

eαYi

]
e(αct)2/2

≤ eα2
Pt

i=1 c2
i /2.



Pr(Xt − X0 ≥ λ) = Pr(eα(Xt−X0) ≥ eαλ)

≤ E[eα(Xt−X0)]

eαλ

≤ eα2
Pt

i=1 c2
i /2−αλ

≤ e
− λ2

2
Pt

k=1
c2
k ,

by setting α = λ/
∑t

k=1 c2
k .



Application: Balls and Bins

We throw m balls independently and uniformly at random into n
bins.
Xi = the random variable representing the bin that the ith ball
falls into.
F = the number of empty bins after the m balls are thrown.
The sequence

Zi = E[F | X1, . . . ,Xi ]

is a Doob martingale and |Zi − Zi−1| < 1
By the Azuma-Hoeffding inequality

Pr(|F − E[F ]| ≥ ε) ≤ 2e−2ε2/m.

E[F ] = n

(
1− 1

n

)m

.



Application: Chromatic Number

The chromatic number χ(G ) of a graph G is the minimum number
of colors needed in order to color all vertices of the graph so that
no adjacent vertices have the same color.
Let G be a random grapg in Gn,p.
Let Gi be the random subgraph of G induced by the set of vertices
1, . . . , i .
Let Z0 = E[χ(G )], and

Zi = E[χ(G ) | G1, . . . ,Gi ].

Since a vertex uses no more than one new color, |Zi − Zi−1| ≤ 1.

Pr(|χ(G )− E[χ(G )]| ≥ λ
√

n) ≤ 2e−2λ2
.

This result holds even without knowing E[χ(G )].



Stopping Times

Lemma

If the sequence Z0,Z1, . . . ,Zn is a martingale with respect to
X0,X1, . . . ,Xn, then for all 0 ≤ i ≤ n,

E[Zn] = E[Z0].

Proof.

Since Z0,Z1, . . . is a martingale with respect to X0,X1, . . . ,Xn,

Zi = E[Zi+1 | X0, . . . ,Xi ].

Taking the expectation of both sides and using the definition of
conditional expectation, we have

E[Zi ] = E[E[Zi+1 | X0, . . . ,Xi ]] = E[Zi+1].

Repeating this argument, we have E[Zn] = E[Z0].



Definition

A non-negative, integer-valued random variable T is a stopping
time for the sequence {Zn, n ≥ 0}, if the event T = n depends
only on the value of the random variables Z0,Z1, . . . ,Zn (or
independent of Zk for k ≥ n + 1).

Theorem

Martingale Stopping Theorem If Z0,Z1, . . . is a martingale with
respect to X1,X2, . . ., and T is a stopping time for X1,X2, . . ., then

E[ZT ] = E[Z0]

whenever one of the following holds:

• the Zi are bounded, so that is there is a constant c such that
for all i , |Zi | ≤ c;

• T is bounded;

• E[T ] < ∞, and there is a constant c such that
E[|Zi+1 − Zi | | X1, . . . ,Xi ] < c.



gambler’s ruin

Consider a sequence of independent, fair gambling games.
In each round, a player wins a dollar with probability 1/2 or loses a
dollar with probability 1/2.
Xi = the amount won on the i-th game.
Zi = the total won by the player after i games (Z0 = 0).
Assume that the player quits the game when she either loses `1 or
wins `2 dollars.
What is the probability that the player wins `2 dollars before losing
`1 dollars?



T be the first time the player has either won `2 or lost `1.
Then T is a stopping time for X1,X2, . . ..
The sequence Z0,Z1, . . . is a martingale, and the values of the Zi ’s
are bounded.
Applying the martingale stopping theorem we have

E[ZT ] = E[Z0] = 0.

Let q be the probability that the gambler quits playing after
winning `2 dollars.

E[ZT ] = `2q − `1(1− q) = 0,

giving

q =
`1

`1 + `2
,



Application: A Ballot Theorem

Two candidates run for an election. Candidate A obtains a votes,
and candidate B obtains b < a votes.
The votes are counted in a random order, chosen uniformly at
random from all permutations on the a + b votes.
Show that the probability that candidate A is always ahead in the
count is a−b

a+b .



Wald’s Equation

Theorem

Wald’s equation Let X1,X2, . . . be non-negative, independent,
identically distributed random variables with distribution X . Let T
be a stopping time for this sequence. If T and X have bounded
expectation, then

E

[
T∑

i=1

Xi

]
= E[T ] · E[X ].

In fact Wald’s equation holds more generally; there are different
proofs of the equality that do not require the random variables
X1,X2, . . . to be non-negative.



proof

For i ≥ 1, let

Zi =
i∑

j=1

(Xj − E[X ]).

The sequence Z1,Z2, . . . is a martingale with respect to X1,X2, . . .,
and E[Z1] = 0.
Now, E[T ] < ∞ and

E[|Zi+1 − Zi | | X1, . . . ,Xi ] = E[|Xi+1 − E[X ]|] ≤ 2E[X ].

Hence we can apply the martingale stopping theorem to compute

E[ZT ] = E[Z1] = 0.



We now find

E[ZT ] = E

 T∑
j=1

(Xj − E[X ])


= E

 T∑
j=1

Xj − TE[X ]


= E

 T∑
j=1

Xj

− E[T ] · E[X ]

= 0,

which gives the result.



Simple example

Consider a gambling game in which a player first rolls one standard
die. If the outcome of the roll is X then she rolls X new standard
dice and her gain Z is the sum of the outcomes of the X dice.
What is the expected gain of this game?
For 1 ≤ i ≤ X , let Yi be the outcome of the i-th die in the second
round. Then

E[Z ] = E

[
X∑

i=1

Yi

]
.

Applying Wald’s equality we obtain

E[Z ] = E[X ] · E[Yi ] =

(
7

2

)2

=
49

4
.



Example: Ethernet Protocol

• n servers communicating through a shared channel.

• Time is divided into discrete slots.

• At each time slot, any server that has a packet can transmit it
through the channel.

• If exactly one packet is sent at that time, the transmission is
successfully completed. If more than one packet is sent, then
none are successful (and the senders detect the failure).

• Packets are stored in the server’s buffer until they are
successfully transmitted.

• Servers follow the following simple protocol: at each time slot,
if the server’s buffer is not empty, then with probability 1

n it
attempts to send the first packet in its buffer.



Assume that servers have an infinite sequence of packets in their
buffers. What is the expected number of time slots until each
server successfully sends at least one packet?
N = be the number of packets succesfully sent until each server
successfully sends at least one packet.
ti = the time slot in which the i-th packet is successfully
transmitted (t0 = 0)
Let ri = ti − ti−1.
T = the number of time slots until each server successfully sends
at least one packet.

T =
N∑

i=1

ri .



The probability that a packet is successfully sent in a given time
slot is given by

p =

(
n

1

) (
1

n

) (
1− 1

n

)n−1

≈ e−1.

The ri ’s each have a geometric distribution with parameter p, so
E[ri ] = 1

p ≈ e.
Given that a packet was successfully sent at a given time slot, the
sender of that packet is uniformly distributed among the n servers,
independent of previous steps. By the coupon collector’s analysis
E[N] = nH(n) = n ln n + O(n).
We use the Wald’s equality to compute

E[T ] = E

[
N∑

i=1

ri

]
= E[N] · E[ri ]

=
nH(n)

p
,

which is about en ln n.



stochastic counting process

Consider a sequence of events occurring at random times. Let
N(t) denote the number of events in interval [0, t]. The process
{N(t), t ≥ 0} is a stochastic counting process.



The Poisson Process

Definition

A Poisson process with parameter (or rate) λ is a stochastic
counting process {N(t), t ≥ 0} such that:

1 N(0) = 0.

2 The process has independent and stationary increments. That
is, for any t, s > 0, the distribution of N(t + s)− N(s), is
identical to the distribution of N(t), and for any two disjoint
intervals [t1, t2] and [t3, t4], the distribution of N(t2)− N(t1)
is independent of the distribution of N(t4)− N(t3).

3 limt→0
Pr(N(t)=1)

t = λ. That is, the probability of an event in
a short interval t is proportional to λt.

4 limt→0
Pr(N(t)≥2)

t = 0. That is, the probability of more than
one event is a short interval t tends to 0.



Theorem

Let {N(t) | t ≥ 0} be a Poisson process. Then for any t, s ≥ 0
and any integer n ≥ 0,

Pn(t) = Pr(N(t + s)− N(s) = n) = e−λt (λt)n

n!
.



Pn(t) is well defined since the distribution of N(t + s)− N(s)
depends only on t and is independent of s.
To compute P0(t):

P0(t + h) = P0(t)P0(h)

P0(t + h)− P0(t)

h
= P0(t)

P0(h)− 1

h

= P0(t)
1− Pr(N(h) = 1)− Pr(N(h) ≥ 2)− 1

h

= P0(t)
−Pr(N(h) = 1)− Pr(N(h) ≥ 2)

h
,



P ′0(t) = lim
h→0

P0(t + h)− P0(t)

h

= lim
h→0

P0(t)
−Pr(N(h) = 1)− Pr(N(h) ≥ 2)

h
= −λP0(t).

P0(t) = Ce−λt

Since P0(0) = 1 we conclude that

P0(t) = e−λt . (1)



For n ≥ 1

Pn(t + h) =
n∑

k=0

Pn−k(t)Pk(h)

= Pn(t)P0(h) + Pn−1(t)P1(h) +
n∑

k=2

Pn−k(t) Pr(N(h) = k).

Computing the first derivative of Pn(t) we get

P ′n(t) = lim
h→0

Pn(t + h)− Pn(t)

h

= lim
h→0

1

h
(Pn(t)(P0(h)− 1) + Pn−1(t)P1(h)+

n∑
k=2

Pn−k(t) Pr(N(h) = k)

)
= −λPn(t) + λPn−1(t).



To solve
P ′n(t) = −λPn(t) + λPn−1(t)

we write
eλt(P ′n(t) + λPn(t)) = eλtλPn−1(t),

which gives
d

dt
(eλtPn(t)) = λeλtPn−1(t). (2)

d

dt
(eλtP1(t)) = λeλtP0(t) = λ

implying
P1(t) = (λt + c)e−λt .

Since P1(0) = 0 we conclude that

P1(t) = λte−λt . (3)



We continue by induction on n to prove that for all n ≥ 0,

Pn(t) = e−λt (λt)n

n!
.

Using (2) and the induction hypothesis gives

d

dt
(eλtPn(t)) = λeλtPn−1(t) =

λntn−1

(n − 1)!
.

Integrating and using the fact that Pn(0) = 0 gives the result.



Interarrival Distribution

Let X1 be the time of the first event of the Poisson process, and Xn

be the interval of time between the (n − 1)-st and the n-th event.

Theorem

X1 has an exponential distribution with parameter λ.

Proof.

Pr(X1 > t) = Pr(N(t) = 0) = e−λt .

Thus,
F (X1) = 1− Pr(X1 > t) = 1− e−λt .



Theorem

The random variables Xi , i = 1, 2, . . . are independent, identically
distributed, exponential random variables with parameter λ.

Proof.

Pr(Xi > ti | (X0 = t0) · · · ∩ (Xi−1 = ti−1))

= Pr(N(
i∑

k=0

tk)− N(
i−1∑
k=0

tk) = 0) = e−λti .



Combining and Splitting Poisson Processes

Theorem

Let N1(t) and N2(t) be independent Poisson processes with
parameters λ1 and λ2, respectively. Then N1(t) + N2(t) is a
Poisson process with parameter λ1 + λ2, and each event for the
process N1(t) + N2(t) arises from the process N1(t) with
probability λ1

λ1+λ2
.

The interarrival times for the two processes are independent.
Let T1 and T2 be the times for the first arrival for N1 and N2,
respectively.

Pr((T1 ≤ x) ∩ (T2 ≤ y))

= Pr((N1(x) ≥ 1) ∩ (N2(y) ≥ 1))

= Pr(N1(x) ≥ 1) Pr(N2(y) ≥ 1)

= Pr(T1 ≤ x) Pr(T2 ≤ y).



The interarrival time for N1(t) + N2(t) is exponentially distributed
with parameter λ1 + λ2, and hence N1(t) + N2(t) is a Poisson
process with parameter λ1 + λ2.
Each event for N1(t) + N2(t) comes from the process N1(t) with
probability λ1

λ1+λ2
.



Theorem

Suppose that we have a Poisson process N(t) with rate λ. Each
event is independently labeled as being Type 1 with probability p
and Type 2 with probability 1− p. Then the Type 1 events form a
Poisson process N1(t) of rate λp, the Type 2 events form a
Poisson process N2(t) of rate λ(1− p), and the two Poisson
processes are independent.



Proof:

We show that the Type 1 events in fact form a Poisson process.

Pr(T > t) =
∞∑

k=0

Pr(N1(t) = 0 |N(t) = k) · Pr(N(t) = k)

=
∞∑

k=0

(1− p)k
e−λt(λt)k

k!

= e−λt
∞∑

k=0

(λt(1− p))k

k!

= e−λteλt(1−p) = e−(λp)t .

The interarrival distribution of Type 1 events is exponential with
parameter λp, and therefore N1(t) is a Poisson process.



To show independence,

Pr((N1(t) = m) ∩ (N2(t) = n))

= Pr((N(t) = m + n) ∩ (N2(t) = n))

=
e−λt(λt)m+n

(m + n)!

(
m + n

n

)
pm(1− p)n

=
e−λt(λt)m+n

m!n!
pm(1− p)n

=
e−λtp(λtp)m

m!

e−λt(1−p)(λt(1− p))n

n!
= Pr(N1(t) = m) · Pr(N2(t) = n).



Conditional Arrival Time Distribution

Theorem

Given that N(t) = n, the n arrival times have the same distribution
as the order statistics of n independent random variables with
uniform distribution over [0, t].

Proof.

Pr(X1 < s|N(t) = 1) =
Pr((X1 < s) ∩ (N(t) = 1))

Pr(N(t) = 1)

=
Pr((N(s) = 1) ∩ (N(t)− N(s) = 0))

Pr(N(t) = 1)

=

(
λse−λs

)
e−λ(t−s)

λte−λt

=
s

t
.



Discrete-space Continuous Time Markov Processes

Definition

A continuous time random process {Xt | t ≥ 0}, is Markovian (or
is called a Markov process) if for all s, t ≥ 0:

Pr(X (s + t) = x | X (u), 0 ≤ u ≤ t) =

Pr(X (s + t) = x | X (t) = y),

and this probability is independent of the time t.



A discrete-space continuous time Markov process can be expressed
as a combination of two random processes:

1 A transition matrix P = (pi ,j); where pi ,j is the probability
that the next state is j given that the current state is i . The
matrix P is called the embedded or skeleton Markov chain of
the corresponding Markov process.

2 A vector of parameters (θ1, θ2, . . .), such that the distribution
of time the process spends in state i before moving to the
next step is exponential with parameter θi .



stationary distribution

Pj ,i (t) = the probability of being in state i at time t when starting
from state j at time 0.

lim
t→∞

Pj ,i (t) = πi .

If the initial state (at t = 0) j is chosen from the stationary
distribution, then the probability of being in state i at time t is πi

for all t > 0.
To determine the stationary distribution:

P ′j ,i (t) = lim
h→0

Pj ,i (t + h)− Pj ,i (t)

h

= lim
h→0

∑
k Pj ,k(t)Pk,i (h)− Pj ,i (t)

h

= lim
h→0

∑
k 6=i

Pk,i (h)

h
Pj ,k(t)−

1− Pi ,i (h)

h
Pj ,i (t)

 .



lim
h→0

Pk,i (h)

h
= θkpk,i .

lim
h→0

1− Pi ,i (h)

h
= θi (1− pi ,i ).

lim
h→0

∑
k 6=i

Pk,i (h)

h
Pj ,k(t)−

1− Pi ,i (h)

h
Pj ,i (t)


=

∑
k 6=i

θkpk,iPj ,k(t)− Pj ,i (t)(θi − θipi ,i )

=
∑
k

θkpk,iPj ,k(t)− θiPj ,i (t).



Now taking the limit as t →∞ gives

lim
t→∞

P ′j ,i (t)

= lim
t→∞

∑
k

θkpk,iPj ,k(t)− θiPi ,i (t) =
∑
k

θkpk,iπk − θiπi .

If the process has a stationary distribution, it must be that

lim
t→∞

P ′j ,i (t) = 0.

πiθi =
∑
k

πkθkpk,i .



Application: M/M/1 Queue

• FIFO queue.

• Customers arrive to a queue according to a Poisson process
with parameter λ.

• One server.

• The service times for the customers are independent and
exponentially distributed with parameter µ.

• Let M(t) be the number of customers in the queue at time t.

• The process {M(t) | t ≥ 0} defines a continuous-time Markov
process. Pk(t) = Pr(M(t) = k)



dP0(t)

dt
= lim

h→0

P0(t + h)− P0(t)

h

= lim
h→0

P0(t)(1− λh) + P1(t)µh − P0(t)

h
= −λP0(t) + µP1(t), (4)

and for k ≥ 1,

dPk(t)

dt
= lim

h→0

Pk(t + h)− Pk(t)

h

= lim
h→0

Pk(t)(1− λh − µh) + Pk−1(t)λh + Pk+1(t)µh − Pk(t)

h
= −(λ + µ)Pk(t) + λPk−1(t) + µPk+1(t).



In equilibrium

dPk(t)

dt
= 0 for k = 0, 1, 2, . . . .

π0 = 1− λ

µ

πk =

(
1− λ

µ

) (
λ

µ

)k

.



Queue Parameters

• The number of customers in the system +1 has geometric
distribution with parameter 1− λ

µ

• Expected number of customer in the system

L =
1

1− λ
µ

− 1 =
λ

µ− λ
.

• Let W be the expected time a customer spends in the system.

W =
L

λ
=

1

µ− λ



Little’s Formula

N = lim
t→∞

1

t

t∑
i=1

N(i)

Assume α(t) arrivals during [0, t], in times τ1, . . . , τα(t). Then

W = lim
t→∞

∑α(t)
i=1 W (τi )

α(t)
.

Little’s Equation: If N is bounded then the system is stable and

N = λW .



“Proof”

The expected number of new arrivals the interval [0, t] is λt .
The expected number of departures is N

W t.
In the limit

λt =
N

W
t

or

λW = N.

[non-lattice, with probability 1]



Little’s Result

Let W be the expected time a customer spends in the system.
α(t) = total number of arrivals up to time t.
β(t) = total time spent by all customers in the system up to time
t.

Wtλt =
β(t)

α(t)

α(t)

t
=

β(t)

t
= Lt

Assume that the following limits exist:
limt→∞Wt = W
limt→∞ λt = λ
limt→∞ Lt = L
Then

L = λW



M/M/1/K Queue in Equilibrium

An M/M/1/K queue is an M/M/1 queue with bounded queue
size. If a customer arrives while the queue already has K customers
this customer leaves the system instead of joining queue.

πk =

{
π0(

λ
µ)k for k ≤ K

0 for k > K

and

π0 =
1∑K

k=0(
λ
µ)k

.



M/M/∞ Queue

Customers arrive to the coffee shop according to a Poisson process
with parameter λ and stay for interval with exponential distribution
with parameter µ (all independent).

π0λ = π1µ,

and for k ≥ 1

πk(λ + kµ) = πk−1λ + πk+1(k + 1)µ. (5)

πk+1(k + 1)µ = πk(λ + kµ)− πk−1λ

= πkλ + πkkµ− πk−1λ.

πkkµ = πk−1λ,



πk+1 =
λ

µ(k + 1)
πk .

πk = π0

(
λ

µ

)k 1

k!
,

1 =
∞∑

k=0

π0

(
λ

µ

)k 1

k!
= π0eλ/µ.

π0 = e−λ/µ and

πk =
e−λ/µ(λ/µ)k

k!
,

The equilibrium distribution is the discrete Poisson distribution
with parameter λ/µ.



Second Approach

M(t) = number of customers at time t, assuming M(0) = 0.
Let N(t) = the total number of customers that arrived in the
interval [0, t].

Pr(M(t) = j) =
∞∑

n=0

Pr(M(t) = j | N(t) = n)e−λt (λt)n

n!
. (6)

If a customer arrived at time x , the probability that she is still in at
time t is e−µ(t−x).
the arrival time of an arbitrary customer is uniform on [0, t].
The probability that an arbitrary customer is still in at time t is
given by

p =

∫ t

0
e−µ(t−x) dx

t
=

1

µt
(1− e−µt).



Since the events for different users are independent, for j ≤ n

Pr(M(t) = j | N(t) = n) =

(
n

j

)
pj(1− p)n−j .

Pr(M(t) = j) =
∞∑
n=j

(
n

j

)
pj(1− p)n−je−λt (λt)n

n!

= e−λt (λtp)j

j!

∞∑
n=j

(λt(1− p))n−j

(n − j)!

= e−λt (λtp)j

j!

∞∑
m=0

(λt(1− p))m

(m)!

= e−λt (λtp)j

j!
eλt(1−p)

= e−λtp (λtp)j

j!
.

Thus, M(t) has a Poisson distribution with parameter λtp.
Since

lim
t→∞

λtp = lim
t→∞

λt
1

µt
(1− e−µt) =

λ

µ
,

in the limit the distribution is Poisson with parameter λ
µ .



Supermarket Model
n servers

Poisson arrivals
at rate λn, λ < 1

Customer goes
to shorter of two.

Mean service
time is 1, 
exponential 

[M,VDK,VS]



• sk = fraction of queues with at least k customers.

• The state of the system at time t: (s0(t), s1(t), s2(t), . . .)

• Fraction of queues with k customers is

Sk − Sk+1

• Probability that the smallest of d random choices has k − 1
customers

Sd
k−1 − Sd

k



Setting Differential Equations
rate sk increases

( )( ) nssdtn kk
22

1 −−λ

rate sk decreases

( )( ) ndtssn kk 1+−



Expected behavior of process{
dsi
dt = λ(sd

i−1 − sd
i )− (si − si+1) for i ≥ 1

s0 = 1
(7)

In equilibrium (fixed point), for all i we have

dsk
dt

= 0

Summing ∑
i≥k

dsi
dt

= λ(sd
i−1 − sd

i )− (si − si+1) = 0

we get
−λs2

k + sk+1 = 0

which gives

πk = λ2k−1.



Comparison:

• Choosing a random queue:
• Each queue is an M/M/1 queue
• For each queue πk = λk

• Expected maximum queue length: log n
log log n + O(1)

• Choosing the best of d random choices:

• For each queue πk = λ2k−1

• Expected maximum queue length log log n
log d + O(1)



Whats Missing?

Why do the differential equations describe the random process?



Kurtzs Theorem

Over fixed time intervals and for fixed finite dimensional processes,
the deviation of the random process from the solution to the
differential equations obeys Chernoff-like bounds.

Pr(sup
t,i
|si (t)− ŝi (t)| ≥ ε) ≤ e−cnε2

Problem: Kurtz’s Theorem (generally stated) requires fixed finite
dimensional spaces


