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Overview

* Day before Yesterday: Introduction,
Spanners (Embedding into subgraph metrics)
* Yesterday : Embedding into tree metrics

» Today : Tree covers for routing and
approximate distance oracles



@ Tree Covers \:>” <:/

» Alternate to approximating distances by
random tfrees

» Pick a few trees such that for every pair,
some tree has a shortest path for the pair

+ Defn: A tree cover for a graph (and its
metric) is a family of trees such that
- Each tree dilates distances and
- For any pair of nodes (x,y), some tree in the family

maintains the distance between x and y

* Natural measure for optimization: Minimize
the number of trees in the cover; Do better
for special classes of graphs



Applications of Tree Covers

* Network Routing: Given a routing protocol for
trees and a tree cover, we can assignh the
routing between pairs to the trees that
preserve the distance for the pair and use
the tree protocols

- Overhead: If k trees in cover, O(log k) extra bits
in each packet to specify which tree to use



Applications of Tree Covers

» Distance labeling: Assign labels to vertices so
that one can infer distances between any two
vertices by just looking at the labels
- Trivial with n labels at every vertex

- Trees have distance labelings with O(log n) labels
per node

- With k trees in the cover, can get a distance
labeling with O(k log n) labels



Trees have distance labeling with
O(log n) labels?
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Grids have O(log n)-sized tree covers

* Idea: Use the natural separators and compute
distances from it
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* Implies distance labeling with O(log? n) labels



Planar graphs have O°(/n) size tree

\

covers
» Use O(/n)-size separators

* Include a shortest path tree from every
separator node in the tree cover

* Recurse on the two pieces and pair up their
trees in the final cover to get the bound
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Extensions to recursive small
separator graphs

- Defn: G has 1/3-balanced r(n) sized vertex

separator if there is a r(n)-sized set of

vertices, which if removed, breaks the graph

in two components of size at least n/3.

* G has a recursive 1/3-balanced r(n)-sized
vertex separator if the same holds
recursively for the components formed after
deleting the separator

- E.g. outerplanar and series-parallel graphs have 2-
sized recursive separators; treewidth-k graphs
have k-sized recursive separators.



* Theorem: Every graph with recursive 1/3-
balanced r(n)-sized vertex separators has an
r(n) logs,, n-sized tree cover.
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Simple lower bound for size of tree

cover
* The unweighted complete graph on n nodes

does not have a (n/2-1) cover
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Tree covers with stretch

+ Stretch-D tree cover is a family of trees
such that
- Every tree dilates the graph distances and

- For any two nodes, there is a tree in the family
that maintains the distance between the pair to
within a factor

+ [GKR ‘01, T '01] Every planar graph has a
stretch-3 O(log n) sized tree cover

+ [TZ'01] For all graphs there is a stretch (2k -
1) tree cover such that every vertex lies in
O™ (nVk) trees
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Stretch-3 planar tree covers

+ Defn: G has a t-path separator if there are t
paths in G such that

- Each path is a geodesic (i.e., a shortest path
between its endpoints)

- The union of the paths is a 1/3-balanced separator
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* Theorem: Every planar graph has a 2-path
separator

* Proof idea:

- Use Lipton-Tarjan separator algorithm starting
with a shortest path tree T

- Traingulate graph and argue existence of an edge
e=(u,v) such that the fundamental cycle
corresponding to this edge in T is a good separator

- Paths from (u,lca) and (v,lca) in T give the 2-path
separator
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t-path separators to stretch-3 tree

covers
* If G has t-path recursive separators, it has

an O(t log n) sized stretch-3 tree cover

» Use the idea from grids building shortest
path trees from each path in the separator
and recurse to argue size
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t-path separators give 3 stretch trees

In cover
» Consider path P that intersects the shortest

path for a pait of vertices u, v and use
geodesic property
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Stretch-t tree covers in general

graphs

+ We will see how to construct ina (2k -1)
stretch distance labeling with space O(knl/k)
labels per node in time O(kmn/k)

+ This can be used to construct a stretch (2k -

1) tree cover where every node is in at most
O(kn'/k) trees

» Another corollary is the construction of a
(2k-1)-spanner with O(kn!*/k) edges.

* Following slides from Uri Zwick
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A hierarchy of centers
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Clusters
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Bunches (inverse clusters)

weB(v) < veC(w)
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Bunches Ao= *
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The data structure

For every vertex veV.:

* The centers p,(v), po(v),..., Pk-1(V)
* A hash table holding B(v)

For every weV, we can check, in
, whether weB(v), and
if so, what is (v, w).
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Lemma: E[|B(v)|]<kn!’k
Proof: |B(v)nA,| is stochastically
dominated by a geometric random
variable with parameter p=n-1/k,
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Query answering algorithm

Algorithm dist, (u,v)
w<«u , i<0
while wgB(v)
{ i«i+l
(u,v) <(v,u)
w<pi(u) }
return 6(w,u)+ 6(w,v)
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Query answering algorithm

w3=p3(v)eA;
wo=pa(U)eA,;

25



w;=pi(u)eA;

IA

Analysis

wi_1=pi-1(v)eA;_;
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Analysis of stretch - details

* Initially 8(w,u) = d(u,u)=0
* Show at every iteration, 5(w,u) does not
increase by more than A

+ Then final distance < 3(w,u) + 8(w,v) < 8(w,u) +
d(w,u) + A < [(k-1) + (k-1) + 1] A

+ If ithiteration passes while loop, w; ; is hot in
B(vi.1)
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Spanners / Tree covers

In each cluster,
construct a tree
of shortest paths

The union of all
these trees in a
(2k-1)-spanner
with knl+1/k
edges.

Constructed in
O(kmni/k) timel
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Tree Cover

Each vertex contained in at most n!’klogn trees.

For every u,v, there is a tree with a path of
stretch at most 2k-1 between them.
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Summary

+ Distances are vital for building and routing
networks

+ We discussed methods of handling generall
distances by embedding into simpler ones and
applications to various network problems

- Day before Yesterday: Introduction, Spanners
(Embedding into subgraph metrics)

- Yesterday : Embedding into tree metrics

- Today : Tree covers for routing and approximate
distance oracles
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* More on metric embeddings in our course
website

» Good luck on framing new problems and
applying these techniques in your own
research!
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