Algorithmic Applications of Metrics Embeddings 3
Tree covers and distance labelings
R. Ravi
ravi@cmu.edu

Overview

- Day before Yesterday: Introduction, Spanners (Embedding into subgraph metrics)
- Yesterday: Embedding into tree metrics
- Today: Tree covers for routing and approximate distance oracles

Tree Covers

- Alternate to approximating distances by random trees
- Pick a few trees such that for every pair, some tree has a shortest path for the pair
- Defn: A tree cover for a graph (and its metric) is a family of trees such that
- Each tree dilates distances and
- For any pair of nodes (x, y), some tree in the family maintains the distance between x and y
- Natural measure for optimization: Minimize the number of trees in the cover; Do better for special classes of graphs

Applications of Tree Covers

- Network Routing: Given a routing protocol for trees and a tree cover, we can assign the routing between pairs to the trees that preserve the distance for the pair and use the tree protocols
- Overhead: If k trees in cover, $O(\log k)$ extra bits in each packet to specify which tree to use

Applications of Tree Covers

- Distance labeling: Assign labels to vertices so that one can infer distances between any two vertices by just looking at the labels
- Trivial with n labels at every vertex
- Trees have distance labelings with $O(\log n)$ labels per node
- With k trees in the cover, can get a distance labeling with $O(k \log n)$ labels

Trees have distance labeling with $O(\log n)$ labels?

Grids have $O(\log n)$-sized tree covers

- Idea: Use the natural separators and compute distances from it

- Implies distance labeling with $O\left(\log ^{2} n\right)$ labels

Planar graphs have $0^{*}(\sqrt{n})$ size tree covers

- Use $O(\sqrt{n})$-size separators
- Include a shortest path tree from every separator node in the tree cover
- Recurse on the two pieces and pair up their trees in the final cover to get the bound

$+$

Extensions to recursive small separator graphs

- Defn: G has $1 / 3$-balanced $r(n)$ sized vertex separator if there is a $r(n)$-sized set of vertices, which if removed, breaks the graph in two components of size at least $n / 3$.
- G has a recursive $1 / 3$-balanced $r(n)$-sized vertex separator if the same holds recursively for the components formed after deleting the separator
- E.g. outerplanar and series-parallel graphs have 2sized recursive separators; treewidth-k graphs have k-sized recursive separators.
- Theorem: Every graph with recursive 1/3balanced $r(n)$-sized vertex separators has an $r(n) \log _{3 / 2} n$-sized tree cover.

Simple lower bound for size of tree cover

- The unweighted complete graph on n nodes does not have a (n/2-1) cover

Tree covers with stretch

- Stretch-D tree cover is a family of trees such that
- Every tree dilates the graph distances and
- For any two nodes, there is a tree in the family that maintains the distance between the pair to within a factor \pm
- [GKR '01, T '01] Every planar graph has a stretch-3 O(log n) sized tree cover
- [TZ '01] For all graphs there is a stretch (2k1) tree cover such that every vertex lies in $O^{*}\left(n^{1 / k}\right)$ trees

Stretch-3 planar tree covers

- Defn: G has a t-path separator if there are \dagger paths in G such that
- Each path is a geodesic (i.e., a shortest path between its endpoints)
- The union of the paths is a 1/3-balanced separator
- Theorem: Every planar graph has a 2-path separator
- Proof idea:
- Use Lipton-Tarjan separator algorithm starting with a shortest path tree T
- Traingulate graph and argue existence of an edge $e=(u, v)$ such that the fundamental cycle corresponding to this edge in T is a good separator
- Paths from (u,lca) and (v,lca) in T give the 2-path separator
t-path separators to stretch-3 tree covers
- If G has t-path recursive separators, it has an $O(\dagger \log n)$ sized stretch-3 tree cover
- Use the idea from grids building shortest path trees from each path in the separator and recurse to argue size
t-path separators give 3 stretch trees in cover
- Consider path P that intersects the shortest path for a pait of vertices u, v and use geodesic property

$$
\begin{aligned}
d(u, a) & \leqslant d(u, c) \\
+d(v, b) & \leqslant d(v, c)
\end{aligned}
$$

shortest dintemas from P

$$
\begin{aligned}
+d(a, b) & \leqslant d(a, u)+d(u, v)+d(v, b) \\
& \leqslant 2(d(u, c)+d(v, c)) \\
& \leqslant 3 d(u, v)
\end{aligned}
$$

Stretch-t tree covers in general graphs

- We will see how to construct in a ($2 \mathrm{k}-1$) stretch distance labeling with space $O\left(\mathrm{kn}^{1 / k}\right)$ labels per node in time $O\left(k m n^{1 / k}\right)$
- This can be used to construct a stretch (2 k 1) tree cover where every node is in at most O(kn ${ }^{1 / k}$) trees
- Another corollary is the construction of a (2k-1)-spanner with $O\left(k n^{1+1 / k}\right)$ edges.
- Following slides from Uri Zwick

A hierarchy of centers

$C(w) \leftarrow\left\{v \in V \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\} \quad, \quad w \in A_{i}-A_{i+1}$

Bunches (inverse clusters)

$w \in B(v) \Leftrightarrow v \in C(w)$

$$
\begin{gathered}
C(w) \leftarrow\left\{v \in V \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\}, \\
\text { if } w \in A_{i}-A_{i+1}
\end{gathered}
$$

$$
B(v) \leftarrow \bigcup_{i}\left\{w \in A_{i}-A_{i+1} \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\}
$$

$B(v) \leftarrow \bigcup_{i}\left\{w \in A_{i}-A_{i+1} \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\}$

The data structure

For every vertex $\mathbf{v} \in \mathrm{V}$:

- The centers $p_{1}(v), p_{2}(v), \ldots, p_{k-1}(v)$
- A hash table holding $B(v)$

For every $w \in V$, we can check, in constant time, whether $w \in B(v)$, and if so, what is $\delta(v, w)$.

Lemma: $E[|B(v)|] \leq k n^{1 / k}$

 Proof: $\left|B(v) \cap A_{i}\right|$ is stochastically dominated by a geometric randomvariable with parameter $p=n^{-1 / k}$.

$$
\begin{aligned}
& E\left(\left|B(v) \cap A_{i}\right|\right) \text { ? } \\
& v_{j} \in A_{i} \text { in minoring distance form } v \\
& (1) \leqslant u_{1} \sum_{i}(1-p)^{i} \\
& \leqslant \frac{1}{1-(1-p)}=\frac{1}{p}
\end{aligned}
$$

Query answering algorithm

Algorithm dist ${ }_{k}(u, v)$
$w \leftarrow u, i \leftarrow 0$
while $w \notin B(v)$
$\{\quad i \leftarrow i+1$
$(u, v) \leftarrow(v, u)$
$\left.w \leftarrow \mathrm{p}_{\mathrm{i}}(\mathrm{u}) \quad\right\}$
return $\delta(w, u)+\delta(w, v)$

Query answering algorithm

$$
w_{3}=p_{3}(v) \in A_{3}
$$

Analysis

```
\(w_{i}=p_{i}(u) \in A_{i}\)
```


Analysis of stretch - details

- Initially $\delta(w, u)=\delta(u, u)=0$
- Show at every iteration, $\delta(w, u)$ does not increase by more than Δ
- Then final distance $\leq \delta(w, u)+\delta(w, v) \leq \delta(w, u)+$ $\delta(w, u)+\Delta \leq[(k-1)+(k-1)+1] \Delta$
- If $i^{\text {th }}$ iteration passes while loop, w_{i-1} is not in $B\left(v_{i-1}\right)$

Spanners / Tree covers

In each cluster,
construct a tree
of shortest paths
The union of all these trees in a (2k-1)-spanner with $\mathrm{kn}^{1+1 / \mathrm{k}}$ edges.

Constructed in $O\left(\mathrm{kmn}^{1 / k}\right)$ time!

Tree Cover

Each vertex contained in at most $n^{1 / k} \log n$ trees. For every u, v, there is a tree with a path of stretch at most $2 k-1$ between them.

Summary

- Distances are vital for building and routing networks
- We discussed methods of handling generall distances by embedding into simpler ones and applications to various network problems
- Day before Yesterday: Introduction, Spanners (Embedding into subgraph metrics)
- Yesterday : Embedding into tree metrics
- Today: Tree covers for routing and approximate distance oracles
- More on metric embeddings in our course website
- Good luck on framing new problems and applying these techniques in your own research!

