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Overview

* Metrics represent distances between nodes in
a network

+ Embeddings allow reducing problem to simpler
metrics (e.g. frees)

* Informally, cost of embeddings is the amount
of distortion in the pairwise distances =>
minimizing distortion is crucial

» Qutline

- Today: Introduction, Spanners (Embedding into
subgraph metrics)

- Tomorrow: Embedding into tree metrics

- Day after: Tree covers for routing and
approximate distance oracles



Definitions

A metric is a distance function between a set
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Definitions

» Undirected graphs with nonnegative edge
lengths naturally define a shortest path
metric (a.k.a. the metric completion of the

graph)

- d(x,y) = length of the shortest path between x and
y in the graph



Infinite metric spaces

* Real spaces Rk
* Minkowski norms |, for 1-p - 1




Metric Embedding
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Simplifying assumptions

* Most metrics (especially the guest metrics)
will be finite n-point metrics

- Assume all distances are integers at least 1

* Mostly assume polynomial (in n) range of
distance values



Algorithmic Applications of Metric
Embeddings

* Problems where data is a metric
- Embedding into a "simpler” metric where the
problem may be tractable E.g., TSP, facility
location

- Distortion multiplies approximation or competitive
ratio in approximation or online algorithms resply.

- Metric Relaxations

- LP relaxation for a hard problem can be
interpreted as a metric (triangle inequalities are
linear); Embedding into simpler metric allows
rounding

- Distortion translates into approximation ratio



* Problems on metrics
- Problem involves properties of metrics

- E.g., Find a closest line/tree metric to given
metric; Use properties of edit distances between
sequences to find a good consensus sequence.



Important Results on Embeddings we
will not cover

» [Bourgain ‘85, Marousek '95] Any n-point

metric space embeds into |.*with distortion

O(log n/p) [Or in O(log? n) dlmensmns with

distortion O(log n)]

- Proceeds via defining coordinates based on scaled
distances from subsets of points (so-called
Frechet-embeddings)

- Applications to rounding LP relaxations for
sparsest cut problems intrerpreted as metrics
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» [Johnson-Lindenstrauss lemma '84] Any n-

point subset in (arbitrarily high) d-

dimensional Euclidean space can be embedded

into a Euclidean subspace of dimension O(log

n/e?) with distortion (1 + ¢).

- Projection into random subspace of this dimension
works

- Applications to nearest neighbor searching,
learning mixtures of Gaussians

11



Important Results on Embeddings we

will cover |
Spanners or subgraph embeddings: Embed a weighted

graph into its own subgraph to
- Approximately preserve distances
- Keep the subgraph sparse/light
We will cover spanner constructions with and without a root

Embeddings into a distribution of trees

- Any n-point metric embeds into a polynomially computable
distribution of tree metrics with expected distortion ®(log

h)
- Applications to online and approximation algorithms
We will discuss this construction tomorrow

Distance oracles and compact routing schemes

- Can associate O(kn'/¥) labels with every node that can be
used to recover paths with distortion at most (2k -1)
between all pairs

- Applications to constructing tree covers for network routing
We will discuss this the day after tomorrow
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Spanners: Motivation

» Given an undirected graph with edge lengths,
a spanner is a lightweight, distance preserving
subgraph

* Rooted case: Given a root r, preserving
shortest distances from it (SPT) and finding a
minimum length tree (MST) are often
conflicting goals
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LASTs

» Given an undirected graph with edge lengths
and a root r, an (a,b)-LAST or Light
Approximate Shortest path Tree isa tree T
such that

- (distance guarantee)

- (weight guarantee)

+ Theorem [KRY'93 foll. ABP '91]
X, |+
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LAST Construction
+ Greedy Addition Algorithm
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LAST Construction Example
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LAST Analysis

- (distance guarantee)
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Questions

Given an rooted undirected graph with edge
lengths, is it NP-hard or easy to find

* A shortest path tree rooted at r of minimum
total length

* A minimum length spanning tree that has the
shortest maximum distance from the root to
any vertex

* A minimum length spanning tree that has the
shortest expansion of the distance from the
root to any vertex
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An application of LASTs - Cable
Network Design

* Undirected graph with edge lengths I, root r,

demands of flow to root f, >0 for every

vertex

* Must satisfy flows by building a cable network
with cables of capacity u and cost ¢ per unit
length

- Lower bounds

- Connectivity: All nodes must have a connection to
the root

- Routing: Every node's flow to the root must be on a
path at least as long as the shortest path
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Cable Network Design Approximation

Algorithm
+ Find an (a,b)-LAST T minimizing a+b

* Route every vertex's flow on T, comptuing the
total flow f(e) on every tree edge e

» Install d f(e)/u e copies of the cable on e for
all e

Analysis of approximation ratio
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General Spanners

» Given an undirected graph with edge lengths,
an (a,b)-spanner is a subgraph such that
- (distance guarantee) 4
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* Background defn: The girth of an undirected
graph is the length of shortest induced
(chordless) cycle

* Lemma: For a graph with girth g,

No. of edges of G- ndn?/92 ¢
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Spanner construction
* Greedy Algorithm

- Observations /
- (distance guarantee)

- (MST inclusion)
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Weight Analysis
* Partition non-MST edges of H by weight
A = EMSTU E,UE -E,; UE«”—@*»

L = d(MsT) <

* Bound number of edges in each class using
girth lemma

» Calculations for overall weight

24



Bounding the first class
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Bounding the size of a generic class ¢
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Bounding the length of a generic class
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Bounding the total weight of all
classes
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Application of general spanners

+ Cable network design application can be
extended to arbitrary multi-commodity flow
demand pairs

- Setting appropriate values gives an O(log n)
approximation [MP '96]
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General questions

» Given an n-point metric, can you embed it into
an |, metric isometrically? How many
dimensions do you heed?
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General questions

* How much better can you do in the number of
dimensions if the input metric was a tree
metric (i.e., the metric value between any pair
of points is the distance between them on a
unique path in an underlying tree)? [Hint:
Trees have a centroid decomposition, so aim
for O(log n)]
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