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Overview

• Metrics represent distances between nodes in 
a network

• Embeddings allow reducing problem to simpler 
metrics (e.g. trees)

• Informally, cost of embeddings is the amount 
of distortion in the pairwise distances => 
minimizing distortion is crucial

• Outline
– Today:  Introduction, Spanners (Embedding into 
subgraph metrics)

– Tomorrow: Embedding into tree metrics

– Day after: Tree covers for routing and 
approximate distance oracles
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Definitions

• A metric is a distance function between a set 
of points X

1. Identity

2. Symmetry

3. Triangle inequality
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Definitions

• Undirected graphs with nonnegative edge 
lengths naturally define a shortest path 
metric (a.k.a. the metric completion of the 
graph)

• d(x,y) = length of the shortest path between x and 
y in the graph
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Infinite metric spaces

• Real spaces Rk

• Minkowski norms lp for 1 · p · 1

• Picture of lp balls around the origin



6

Metric Embedding

• Map from one metric to another

• Contraction 

• Expansion

• Distortion 

• Alternate definition of distortion
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Simplifying assumptions

• Most metrics (especially the guest metrics) 
will be finite n-point metrics

• Assume all distances are integers at least 1

• Mostly assume polynomial (in n) range of 
distance values 
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Algorithmic Applications of Metric 
Embeddings

• Problems where data is a metric
– Embedding into a “simpler” metric where the 
problem may be tractable E.g., TSP, facility 
location 

– Distortion multiplies approximation or competitive 
ratio in approximation or online algorithms resply.

• Metric Relaxations
– LP relaxation for a hard problem can be 
interpreted as a metric (triangle inequalities are 
linear); Embedding into simpler metric allows 
rounding

– Distortion translates into approximation ratio
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• Problems on metrics
– Problem involves properties of metrics

– E.g., Find a closest line/tree metric to given 
metric; Use properties of edit distances between 
sequences to find a good consensus sequence.
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Important Results on Embeddings we 
will not cover

• [Bourgain ’85, Marousek ’95]  Any n-point 
metric space embeds into lpk with distortion 
O(log n/p) [Or in O(log2 n) dimensions with 
distortion O(log n)]
– Proceeds via defining coordinates based on scaled 
distances from subsets of points (so-called 
Frechet-embeddings)

– Applications to rounding LP relaxations for 
sparsest cut problems intrerpreted as metrics
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• [Johnson-Lindenstrauss lemma ’84] Any n-
point subset in (arbitrarily high) d-
dimensional Euclidean space can be embedded 
into a Euclidean subspace of dimension O(log
n/ε2) with distortion (1 + ε).
– Projection into random subspace of this dimension 
works

– Applications to nearest neighbor searching, 
learning mixtures of Gaussians
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Important Results on Embeddings we 
will cover

• Spanners or subgraph embeddings: Embed a weighted 
graph into its own subgraph to
– Approximately preserve distances
– Keep the subgraph sparse/light
We will cover spanner constructions with and without a root

• Embeddings into a distribution of trees
– Any n-point metric embeds into a polynomially computable 
distribution of tree metrics with expected distortion Θ(log 
n)

– Applications to online and approximation algorithms
We will discuss this construction tomorrow

• Distance oracles and compact routing schemes
– Can associate O(kn1/k) labels with every node that can be 
used to recover paths with distortion at most (2k -1) 
between all pairs

– Applications to constructing tree covers for network routing
We will discuss this the day after tomorrow
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Spanners: Motivation

• Given an undirected graph with edge lengths, 
a spanner is a lightweight, distance preserving 
subgraph

• Rooted case: Given a root r, preserving 
shortest distances from it (SPT) and finding a 
minimum length tree (MST) are often 
conflicting goals
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LASTs

• Given an undirected graph with edge lengths   
and a root r, an (a,b)-LAST or Light 
Approximate Shortest path Tree is a tree T 
such that
– (distance guarantee)

– (weight guarantee)

• Theorem [KRY’93 foll. ABP ’91]
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LAST Construction

• Greedy Addition Algorithm



16

LAST Construction Example
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LAST Analysis

• (distance guarantee)

• (weight guarantee)
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Questions

Given an rooted undirected graph with edge 
lengths, is it NP-hard or easy to find

• A shortest path tree rooted at r of minimum 
total length

• A minimum length spanning tree that has the 
shortest maximum distance from the root to 
any vertex

• A minimum length spanning tree that has the 
shortest expansion of the distance from the 
root to any vertex
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An application of LASTs – Cable 
Network Design

• Undirected graph with edge lengths l, root r, 
demands of flow to root fv >0 for every 
vertex

• Must satisfy flows by building a cable network 
with cables of capacity u and cost c per unit 
length

• Lower bounds
– Connectivity: All nodes must have a connection to 
the root

– Routing: Every node’s flow to the root must be on a 
path at least as long as the shortest path
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Cable Network Design Approximation 
Algorithm

• Find an (a,b)-LAST T minimizing a+b

• Route every vertex’s flow on T, comptuing the 
total flow f(e) on every tree edge e

• Install  d f(e)/u e copies of the cable on e for 
all e

Analysis of approximation ratio
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General Spanners

• Given an undirected graph with edge lengths, 
an (a,b)-spanner is a subgraph such that
– (distance guarantee)

– (weight guarantee)

• Theorem [CDNS ‘95]



22

• Background defn: The girth of an undirected 
graph is the length of shortest induced 
(chordless) cycle

• Lemma: For a graph with girth g,                                

No. of edges of G · n d n2/g-2 e
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Spanner construction

• Greedy Algorithm

• Observations
– (distance guarantee)

– (MST inclusion)
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Weight Analysis

• Partition non-MST edges of H by weight

• Bound number of edges in each class using 
girth lemma

• Calculations for overall weight
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Bounding the first class
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Bounding the size of a generic class
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Bounding the length of a generic class
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Bounding the total weight of all 
classes
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Application of general spanners

• Cable network design application can be 
extended to arbitrary multi-commodity flow 
demand pairs
– Setting appropriate values gives an O(log n) 
approximation [MP ’96]
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General questions

• Given an n-point metric, can you embed it into 
an l1 metric isometrically? How many 
dimensions do you need? 
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General questions

• How much better can you do in the number of 
dimensions if the input metric was a tree 
metric (i.e., the metric value between any pair 
of points is the distance between them on a 
unique path in an underlying tree)? [Hint: 
Trees have a centroid decomposition, so aim 
for O(log n)]


